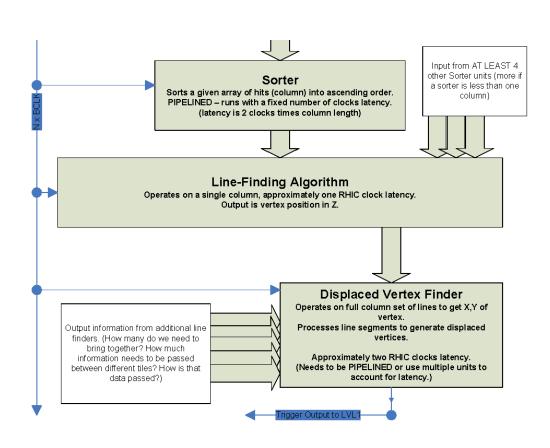

The FVTX LL1

- The FVTX LL1 started as a DOE STTR grant to ISU and Northern Microdesign
 - C. Ogilvie, J. Lajoie, W. Black, N. Badr
 - Phase-1 work completed 2004-2005
 - Proof-of-Principle for FPGA-based displaced vertex tracker
 - Zero magnetic field
 - Demonstrated event vertex finding, displaced vertex identification all in FPGA hardware
 - Phase-II work starting now
 - Implementation in non-zero magnetic field
 - Interface to FVTX
 - Prototype to interface to LDRD tracker
 - Construction of prototype hardware


FVTX LL1 – Phase-1 Interface

- The Phase-1 interface was design to accommodate asynchronous input
 - This was beneficial to testing as well as being matched to the proposed FVTX hardware.

Phase-I Algorithm

- The Phase-1 algorithm was a "brute force" method applied to finding line segments
 - Line segments yield event vertex
 - Sorting lines yields displaced vertices
 - This stage requires cross-stitching between FPGA boards
 - Still grappling with this problem – how complex will it be?

Phase-II Interface

- From the FVTX proposal, data transfer to LL1 will go through the cumulator board.
 - The cumulator board will collect data and organize by beam crossing.
 - One 7.5Gbit fiber per octant
 - This means it will take 2-4 RHIC clocks to transfer the data from one beam crossing (at 1.5% occupancy for a AuAu event)
 - THIS WON'T WORK...
 - ...unless you run multiple LL1's in a barrel-switch fashion» FXPFNSIVF!
- A better way (?)
 - Pass the data through the cumulator board
 - Take advantage of additional transfer time
 - Let LL1 organize and transform the data

Scope of FVTX LL1

- How large will FVTX LL1 be?
 - Planning on servicing ~180k channels with a single "tile" (FPGA) module board)
 - This corresponds to 8 "wedges" across four stations
 - 32 fibers per tile
 - Similar in scope to what we did for MuID LL1
 - Six boards per endcap, twelve for both arms
- Phase-II prototyping
 - Expect that Phase-II hardware prototype will be able to service LDRD VTX detector
 - Keep same design spirit, modify input logic as necessary
 - Prototype hardware developed under Phase-II STTR